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1 Classic Galois Theory

In this chapter we are going to review some basic Galois Theory, while omitting the proofs.

Definition 1.1
Let K be a field and L/K an extension of fields. We call α∈L algebraic, if there exists a
polynomial p(T)∈K[T], such that p(α)=0. Otherwise we say, that α is transcendental. We
say that L/K is algebraic, if every α∈L is algebraic.

Remark 1.2
For every α∈L there exists a homomorphism ev: K[T]−→L, p(T) 7−→p(α).
If α is algebraic, then there exists exactly one polynomial m(T)∈ker(ev), such that:

� ker(ev)=(m(T)) [=the ideal generated by m(T)]

� If n=deg(m(T)), then an, the coefficient of T n in m(T), is 1

� m(T) has minimal degree, e.g. for every g(T)∈K[T]\0 with deg(g(T))<deg(m(T)) ⇒
g(α)6=0.

We call m(T) the minimal polynomial of α.
We will denote the minimal polynomial of α over K by MipoK(α).

Definition 1.3
A field K is algebraically closed, if every non-constant polynomial p(T)∈K[T] has a zero in
K.
An algebraic closure of a field L is an algebraic extension L, which is algebraically closed.

Proposition 1.4
Let K be a field.

1. An algebraic closure K of K exists, and it is unique up to isomorphism.

2. For any algebraic extension L of K there exists an K-algebrahomomorphism φ:L−→K

3. Taking an algebraic closure L of L, the embedding φ from 2) yields an Isomorphism

from L to K:
L K̄

L̄

φ

'

Remarks 1.5

� Any finite extension L/K is algebraic

� We call [L:K] = dimK(L) the degree of the extension L/K.

� If L=k(α) for some α∈L, then [L:K]=deg(MipoK(α))

� For a nested extension M/L/K we find the formula: [M:K]=[M:L]·[L:K]
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Definition 1.6
A polynomial f∈K[T] is called separable, if all roots of f over some algebraic closure K have
multiplicity 1.
An element α∈L of an algebraic extension L/K is called separable, if MipoK(α) is separable.
We say that the extension L/K is separable, if every element of L is separable over K.

Remark 1.7
If F is a field with characteristic 0, then every extension T/F is separable.

Proposition 1.8
Let L/M/K be a nested field-extension, with every single extension being finite, then the
extension L/K is separable if and only if L/M and M/K are.

Remark 1.9
Let K be a field, consider an algebraic closure K. In general the extension K/K will not
be separable. Hence we can consider the set of all separable elements Ks⊂K. Equivalently
Ks is the compositum of all finite separable subextensions of K [=The smallest field, which
contains all finite separable ...]. Thus Ks again forms a field, the so called separable closure
of K.
We call a field perfect, if every finite extension is separable. In this case the algebraic closure
and the separable closure are the same.

Definition 1.10
An algebraic field extension L/K is called normal, if every over K irreducible polynomial has
no root in L or splits into linear factors in L.
We call L/K Galois, if it is normal and separable.

Remark 1.11
Let L/K be a finite field extension, let Aut(L/K)=HomK(L,L), then the following are equiv-
alent:

1. L/K is Galois

2. |Aut(L/K)|=[L:K]

Definition 1.12
We call Gal(L/K)=Aut(L/K) the Galois group of the finite extension L/K, with group op-
eration composition of maps.

Remark 1.13

1. A separable closure Ks of a field K is always a Galois extension.
We call Gal(Ks/K) the absolute Galois group of K.

2. A finite separable extension can be generated by a single element.

Proposition 1.14
Let K be a field, Ks a separable closure and K⊂L⊂Ks be a subfield, then the follwoing
statements are equivalent:
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1. L/K is a Galois-extension

2. for all α∈L:MipoK(α) splits into linear factors in L.

3. for all σ∈Gal(Ks/K) we have: σ(L)⊂L

Definition 1.15
Let L be a field, and G⊂Aut(L). The subfield LG={a∈L | σ(a)=a for all σ∈G} is called the
fixed field over G.

Remarks 1.16

� Let L be a field and G⊂Aut(L) a finite subset. Let K=LG, then the extension L/K is
Galois, [L:K]=|G| and G=Gal(L/K).

� Let L/K be a finite Galois-extension with Galoisgroup G=Gal(L/K), then LG=K.

Theorem 1.17 (Main Theorem of Galois theory for finite extensions)
Let L/K be a finite Galois-extension with Galoisgroup G=Gal(L/K), then there exist two
Isomorphisms φ and ψ, who are inverse to each other:

{Subgroups of G} {Subfields of L/K}

φ

ψ

φ(H) = LH ψ(E) = Gal(L/E)

Remark 1.18
A subgroup H⊂G is normal if and only if the field extension LH/K is normal.
In this case we get an isomorphism of groups:

G/H Gal(LH/K)'

σ 7−→ σ |LH

6



2 infinite Galois Theory

For this section let L/K be a possibly infinite Galois extension.

Lemma 2.1
Each finite subextension of L/K can be embedded in a Galois subextension.
proof:
Each finite Subextension has the form k(α) for some α ∈ L (by Remark 1.13.2 ). We now
embed k(α) into the splitting field of MipoK(α), which is a Galois extension of k. �

This means, that L is the union of finite Galois extensions of K, since for every α ∈ L we
have the finite subextension k(α).

Definition 2.2
A filtered inverse system of groups (Gα;φα,β) with index set Λ consits of:

� a partially ordered set (Λ, ≤), such that for all (α,β)∈ Λ2 there is a γ ∈ Λ, such that
α ≤ γ ∧ β ≤ γ

� for every α ∈ Λ we have a group Gα

� for each α ≤ β we have a homomorphism of groups φα,β: Gβ → Gα, such that for
α ≤ β ≤ γ we get φα,γ = φα,β ◦ φβ,γ

The inverse limit of (Gα;φα,β), which we will denote by lim← Gα, is defined as the subgroup
of the direct product

∏
α∈ΛGα consisting of sequences (gα) satisfying φα,β(gβ) = gα for all

α ≤ β.

Definition 2.3
A profinite group is an inverse limit of a system of finite groups.

Proposition 2.4
Gal(L/K) is a profinite group.
proof:
Let Λ = {Fields M | K ⊂M ⊂ L is a finite Galois extension }

� partially ordered by M ≤ N := M ⊂ N

� directed: for every M,N∈ Λ we have the compositum of M and N

� for all M ∈ Λ we have the group GM=Gal(M/K)

� If M⊂N we get the surjection φM,N : Gal(N/K) −→ Gal(M/K), σ 7−→ σ |M

� finally if α ≤ β ≤ γ ∈ Λ, we obviously obtain φα,γ = φα,β ◦ φβ,γ, since these maps are
all restrictions.

claim: Gal(L/K) ' lim← Gα

Let Ψ : Gal(L/K) −→
∏

M∈ΛGal(M/K), defined by sending an automorphism σ to the
product of the restrictions σ |M for M ∈ Λ.
Remark:
This is well-defined, because for L ∈ Λ we have σ(L) ⊂ L
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� Ψ is injective:
Let τ ∈ ker(Ψ), which means Ψ(τ) = (Id, Id, Id, ...). Let α ∈ L, we then obtain
K ⊂ K(α) ⊂ P ⊂ L, where P is the finite Galois subextension from lemma 2.1. We
know that τ(α) = α, because τ |P= idP , and α ∈ P . Since α was arbitrary, we obtain
τ = idL.
⇒ injectivity

� Im(Ψ) = lim← Gα:
Im(Ψ) ⊂ lim← Gα, because take σ ∈Gal(L/K), let α ≤ β be arbitrary. We thus get
the map φα,β : Gal(β, k) −→ Gal(α, k) and φα,β(σ |β) = (σ |β) |α= σ |α. And thus per
definition of the inverse limit we get the desired subset relation.
If (σ |β)L∈Λ ∈ lim← Gα, then define a k-automorphism σ by σ(α) = σP (α) for some
finite Galois subextension P containing K(α). This is well-defined, because if H is
another one, we can view the compositum of P and H, let´s name it C, by definition
we have: (σC) |P= φP,C(σC) = σP and (σC) |H= φH,C(σC) = σH , thus:
σP (α) = σH(α). By construction we have: Ψ(σ) = (σL)L∈Λ �

Remark 2.5
Profinite groups have a natural topology:
Let G be the inverse limit of a system of finite froups (Gα;φα,β). For every α ∈ Λ let Gα

have the discrete topology, then we can use the product topology on
∏

α∈ΛGα. Finally we
endow G ⊂

∏
α∈ΛGα with the subspace topology. Observe that with this topology the

natural projections G −→ Gα are continuous.

Lemma 2.6
Let (Gα,φα,β) be an inverse system of groups equipped with the discrete topology, then the
inverse limit lim← Gα is a closed topological subgroup of the product

∏
α∈ΛGα.

proof:
Let g=(gα)∈

∏
α∈ΛGα lim←Gα. We need to find an open neighbourhood of g, which does

not intersect with lim←Gα. By assumption there exist α, β such that φα,β(gβ) 6= gα. Let
H = {(p) ∈

∏
α∈ΛGα | pα = gα ∧ pβ = gβ} ⊂

∏
α∈ΛGα. Let prα :

∏
α∈ΛGα −→ Gα be the

natural projection for every α ∈ Λ, we then have: H = (prα)−1(gα) ∩ (prβ)−1(gβ). Since
every Gα has the discrete topology, the sets {gα} and {gβ} are open, and from Remark 2.5
we know that the natural projections are continuous. Thus H is an open subset, such that
g ∈ H ∧H ∩ lim←Gα = ∅. �

Corollary 2.7
A profinite group is compact and totally disconnected (the only connected subsets are
one-element subsets). Moreover: the open subgroups are precisely the closed subgroups of
finite index.
proof:
By Tychonoff´s Theorem we have:
The product of any collection of compact topological spaces is compact with respect to the
product topology.
Since finite discrete groups are compact, we get that

∏
α∈ΛGα is compact. Hence lim←Gα

is compact by Lemma 2.6
Observe that each open subgroup U is closed, since its complement is a disjoint union of
sets of the form gU with g ∈ lim←Gα U and the gU are open, because U −→ gU is a
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homeomorphism. By compactness of lim←Gα there is only a finite number of the gU, and
thus it has finite index.
If U is now a closed subgroup of finite index, then U is open, because it is the complement
of the finite disjoint union of the gU´s, which are closed subsets. �

Krull´s Theorem
Let M be a subextension of the Galois extension L/K, then Gal(L/M) is a closed subgroup
of Gal(L/K). Moreover the maps M 7−→ H := Gal(L/M) and H 7−→M := LH yield an
inclusion-reversing bijection between subfields k ⊂M ⊂ L and closed subgroups H ⊂ G.
A subextension M/K is Galois over K if and only if Gal(L/M) is normal in Gal(L/K). In
this case there is a natural isomorphism Gal(M/K) ' Gal(L/K)/Gal(L/M)

proof:
Let K ⊂ P ⊂ L be a finite, separable extension. We get a finite Galois extension R:
K ⊂ P ⊂ R ⊂ L.
Then Gal(R/K) is a finite quotient of Gal(L/K), which contains Gal(R/P) as a subgroup.
Let π : Gal(L/K) −→ Gal(R/K) be the projection, and let UL = π−1(Gal(R/P )). UL is an
open subset, because π is continuous and Gal(R/K) is endowed with the discrete topology.
We have UL ⊂ Gal(L/P ), because each φ ∈ UL fixes the field P. Moreover we have
π(Gal(L/P ) ⊂ Gal(R/P ), thus UL = Gal(L/P ).
Now let K ⊂M ⊂ L be an arbitrary subextension. We can write M an a union of finite
galois subextensions Lα K. We get that each Gal(L/Lα) is an open subgroup of Gal(L/K)
and by Corollary 2.7 they are also closed. Since M is the union of the Lα´s, the
intersection of the Galois groups Gal(L/Lα) is exactly Gal(L/M). Hence Gal(L/M) is a
closed subgroup of Gal(L/K).
Recall:
If U ⊂ V ⊂ W are field extensions, then: W/U is Galois ⇒ W/V is Galois.
Thus L/M is a Galois extension, and hence the fixed field LGal(L/M) is precisely M.
Now let H ⊂ Gal(L/K) be a closed subgroup. We get a subextension K ⊂M ⊂ L and thus
H ⊂ Gal(L/M). Let σ ∈ Gal(L/M), pick an open neighbourhood UP of the identity, which
corresponds to a Galois extension P/M. Looking at π |H : Gal(L/M) ⊃ H −→ Gal(P/M)
we find that it is surjective, because otherwise the image would induce a field M ⊂ F ⊂ P ,
with M 6= F by the main Theorem of finite Galois theory. However this contradicts our
assumption, that every element of P\M is moved by some automorphism in H.
Especially we must have elements in H, which map to π(σ). Thus H must contain an
element of σUP and since we chose UP arbitrary, we obtain that σ must be in the closure of
H in Gal(L/M). Since H is closed, we have: H = H ⇒ σ ∈ H.
The other statements are proved similar to the finite case. �
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